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Abstract

To solve the system of linear equations Aw r that arises from the

discretization of a two-dimensional self-Adjoint elliptic differential

equation, iterative methods employing easily computed incomplete

factorizations, LU : A+B, are frequently used. Dupont, Kendall, and

Rachford [5) showed th~at, for the DKM factorization, the number of

iterations (arithmetic operations) require d to ,teduce the A-norm of the

-1/2 1) 2--'
error by a factor of a is 0 h log) (Oh logi)., where h is the

stepsize used in the discretization. p e error estimates which

suggest that. if a pair of Alternating-Di ecton DRFactorizations are

used, then the number of iterafionslarit etic operations) may be

-1/3

decreased to o(h 1/ o-)i (Monlogs-). umerial results supporting this

estimate are include d.
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Iterative methods are frequently used to solve the system of linear

equat ions

Aw - r (1.1)

that arises from the usual five-point discretization of the Dirichlet

problem for the two-dimensional self-adjoint elliptic differential equation

S l + 'Ia2 "I + qu = f in 0, (1.2)

-X &Z sy ay

where, throughout this paper, we assume

1. 10 is an open bounded region in R ,

2. a1 , a2 are Lipschitz continuous in B,

3. 2 a , > 0 in i for some constant q, and

4. q j 0 is bounded in G.

The efficiency of many Iterative methods depends upon the selection of an

easily-inverted approximation A to A. Several

authors [2, 4, 5. 7, 9, 10, 11, 12, 13] have suggested taking A to be an

incomplete factorization of A,

A - LU - A+B, (1.3)

where B is chosen so that L and U are sparse.

For several of these factorizations, there are two directionally

dependent forms of B: B and B2 . Stone [13] found that, for his method,
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experimental results indicated that using the pair of incomplete

factorizations alternately.

(A+BI )w (A+B I)w - *(Aw - r) (1.4)
2

(A+B2)+ - (A+B2)w I - wAw 1 -
%+ 2 nZ2 2

gave a faster rate of convergence than using either A - A+B or A - A+l2

alone in the stationary iteration

Awu+1 - Awa - (Aw n -). .5)

Of course, eliminating w .1. we can rewrite the pair of equations (1.4) in
2

the form (1.5) using

A- N [A+Bll[(2-,)A+B+B 2 ) 1 -I 1 (1.6)

provided that [(2-*)A+B +B21 is nonsingular.1 We refer to the right side of

(1.6) as an Alternating-Direction Incomplete Factorization. Although N

itself may be costly to compute, it Is relatively inexpensive to solve

N x - b. and it is the solution of such systems that is required in theU

Note that the formal inverse of fW , (A+B 2-1((2"*)A+B1+B2][A+B12 - 1 is--

always well-defined. [
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iteration (1.5) and its Chebyshev or conjugate gradient accelerations.
2

In general, N 0 is nonsymetric. Since, in many applications, it is

advantageous for A to be symmetric, we also consider

_1 1 -1 -
17

S " - M +M (1.7

the symmetric part of M71. Again, although S itself may be costly to
0as

compute, it is relatively inexpensive to solve S x = b.

For the DIER factorization (an incomplete factorization similar to

Stone's), Dupont, Kendall, and Rachford (5] showed that the number of

iterations of (1.5) required to reduce the A-norm of the error by a factor

of a is O(h log-) and the associated number of arithmetic operations is

O(h3og-). Moreover, the iteration can be accelerated by Chebyshev or

conjugate gradient methods, decreasing the the number of iterations

required to O(h- 21og-) and the associated number of arithmetic operations

211to O(h 21og-). In this paper, we investigate whether these work estimates

can be improved by using either the Alternating-Direction form (1.6) of the

DIR factorization (AD-DIR) or the Sysmetric Alternating-Direction form

(1.7) of the DIR factorization (SAD-DKR).

2 N can be viewed as a one parameter family of preconditionings for

A. FrAm this point of view, it follows that, when (1.5) is accelerated by
the Chebyshev or conjugate gradient technique, the parameter % internal to
N should be hold fixed, while the external parameter a in (1.5) is varied.U0
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In Section 2, we review the DR factorization and present a

modification. In Section 3, we review some general results concerning the

rate of convergence of the stationary iteration (1.5) and its Chebyshev or

conjugate gradient acceleration. Since these results are dependent upon

the spectrum of A"A. we are led to an investigation of the eigenvalues of

K-1A and S-1 A in the following two sections. More specifically, in* U

Section 4, using the additional restriction that a1 = a2, we develop

eigenvalue estimates for a pair of factors of the iteration matrix I-d-1 A

associated with the modified AD-DR factorization. In Section 5. we

explain why we believe that, for a large class of problems, these estimates

suggest that the number of iterations of (1.5) required to reduce the

A-norm of the error by a factor of a may be O(h-2/'3log) with the

-2-1 1associated number of arithmetic operations being O(h 3log-), and,

moreover, if (1.5) is accelerated by the Chebyshev or conjugate gradient

methods, then the number of iterations may be decreased to 0(h-
1 /31oog)

a
with the associated number of arithmetic operations being 0(h-3log-).

Although these work estimates are not rigorous, numerical results presented

in Section 6 strongly support our conjecture that the estimates are

accurate. In addition, the numerical results indicate that the estimates

are valid for the unmodified as well as the modified forms of the DER

factorization.

2. The MD Faotorisatioa.

In this section, following the notation of [5), we review the DIR

factorization and present a modification.



Let Gh be the set of points (jh~kh) a 13 where h is the stepsize

associated with the discretization and J, k are integers, and let Ohbe the

set of points (jh,kh) a such that ((j+l)hki). ((J-l)h~kh), (jh,(k41)h),

(jh.(k-1)h) a 1halso. Then D8% - 0h Let wj Jk denote the value of the

grid-function w at (jh,kh) a'h

For each point (jh,kh) a 0 Pwe approximate the right side of (1.2)

by the usual five-point self-adjoint difference operator

(Aw) Jk - b~ Jkwj k + 0JOj+lk + f JOjk+1 (2.1)

+cj wl +f w
J-l~~j-lk +J,k-1 j,k-1L

* For definiteness, we take

-2 1
0Jk - -h a1J;-hk)

f - -h-2 1 h
J,k 2h a2 J k1 ) h)

-2 1b -h [a ((J~2)~ + 1 (-~~h

J~1 1

+ a2 (jh,(k 1)h) + &2 (jk,(k-I)h)] q(jh,kh),

although our results hold for other similar sets of coefficients.

When the linear difference operator A is written in matrix form, the

terms in (2.1) that involve wiJk for Cjh,kh) a 8 % are incorporated into

the right side of (1.1). Therefore, we adopt the convention that wj JA - 0

If (Jhkh) d a.. For consistency of notation& we also adopt the

alternative convention used in [5] that
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a~ JA - 0 if (jh~kh) 6 "h Or ((JIe)h,kh) i 5. and

f JA- 0 if (jh.kh) 6 Q or (Jh.(k+l)h) i h

With the latter convention, it is useful to define

17 jeI)h~kh),

k -2 1

qjk-q(Jhkh),

for (Jh,kh) s j

In [5], Dupont. Kendall, and Rachford introduced the DIR

factorizat ion

LL - A+D1  with B,- l+Dl (2.2)

where

Lw)J - VM w (1) w +(2.3)

I J~k J,kj,k + j-1,k j-1,k + j,k-lwj,k-lD

(sw) - h(1 )w (h1 ) (2.4)1JAk J.k j-1.k+l +1~,k-1 J+1,k-1

-(h ()+ h () )wJ,k J41,.k-1 jk

(D V)J fa(1) b w(2.5)

with coeffiuients given by
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v - 1 ) -lhb -0) h (2.6)Jk jk jA j,k J+1,k-1

(t (1) 2 ( (1) .211/2
(tj_1.k j,k-I

( 1n ) f / ( ,1+ )( 2 7
3j,k Jkj k 7

t (1) (2.3)
jk ucJklVj1 kD (2.8)

41) t (1) (1) .(1))2 (2.9)

+lk = tj,k jk cjkfjkl(vjk

Since 0ji k and fj, are zero for (jh.kh) a 8 h , the coefficients of the

factorization can be computed recursively for j and k Increasing. Ve

modify3 this formulation by taking

h(1) ( 1).2

J+1.k " *J,kJ,k/RvJ, k (2.10)

and initializing

j.k [ jk (2.11)

3 Note that the recurrence (2.10) differs from (2.9) only at the points
adjacent to 8% , where aj,k or fJk may be zero but oj, k and fj,k are not.
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if (jh,kh) a 80 h and either ((j+l)hkh) e 0 h or (jh,(k+l)h) a 0 h.4 Dupont,

Kendall, and Rachford [5) showed that, for the unmodified factorization,

the quantity under the square root on the right side of (2.6) is positive,

whence LL is symetric and positive-definite. Lema 4.1 proves that the

modified DUR factorization possesses these properties also. However, for

7(1) B eaiedfnt
(JI A , the modification has the effect of making B1 negative-definite

rather that simply negative-semidefinite, as is the case for the unmodified

S
factorization. This difference is critical to the eigenvalue estimates

developed in Section 4.

If the grid-points are renumbered with j decreasing and k increasing,

then an alternative form of the DUR factorization is given by

L2 i= A+B2  with A2 = B2 +D2 , (2.12)

where

) (2) (2) (2)
2Lw j,k - ~j,k + tj+l~e ~~ gj,k-l'j ,k-1 '( )k v..wk + ,k j+1,k + £k.w.. (2.13)

The coefficients c J and f used in (2.11) do not occur in the
matrix A. Moreover, fo 'some doAsns 1 and their discretizations, the
computation of these coefficients may require the evaluation of el~and a2 ,
respectively, outside of 5. If this presents a problem. c and f may
be replaced by nearby nonzero values. In most instances, Ifils altehion
does not affect the factorization significantly.

A vector w with all components equal is a null-vector for the matrix B
associated with the unmodified DKR factorization.
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h(2) _h(2)
B2 w)j.k = j,k j+lk+1 + hj-l,k-ljl,k-1 (2.14)

(h(2) +h (2) )W
J,k +  j-1 ,k-1" V~

(D w) = (2) b w (2.15)(2w j, k  j~k J~kwJ~ k ,

with coefficients for the unmodified factorization given by

(2) b ,(a2) (2) .(2)
VJk Ebj, (1 j k hj- h ,k- (2.16)

- (2) 2 - (2 ) )211/2-(t (gk  - ) Ik_

(2) f 2I 2 ) (2) (2.17)

j.k j.k jk'

(2) (2) (2) (2).2 (2.19)j-1,k tjkj,k Cj-l,kfjk(jk"

For the modified factorization, we replace (2.19) by

2) ((2) . 2.20)J-l.k :fj-,j,k/(vj,k'

and initialize

v(2) , (2) , + )]1/2 (2.21)VJ,k = tyj,kt ;j-l,k + J,k))(.1

if (Jhkh) £ 
0h and either ((j-)h.kh) a Q or (jh,(k+l)h) 8 h  For

either the modified or unmodified factorizations, the coefficients can be

I

.. ..Ii. . . . . it ~ ~ -, - . . . -- . .. . . . . . . . . . .J ' . .. . .



- 10 -

computed recursively with j decreasing and k increasing.

Again, [ is symmetric and positive-definite for both the modified
(2)

and unmodified factorizations. Furthermore, for y k(2 the modification

has the effect of making B2 negative-definite rather that simply negative-

semidefinite, as is the case for the unmodified factorization.

We end this section with a remark about the directional dependence of

the factorizations (2.2) and (2.12). Not only are the coefficients

computed in a different order, but, also, B1 resembles a second-order

difference operator with differences taken along lines x+y=c, while B2

resembles a similar operator with differences taken along lines x-yc.

3. Error Estimates.

In this section, we review some general results concerning the rate

of convergence of the stationary iteration (1.5) and its Chebyshev or

conjugate gradient acceleration.

To begin, we introduce some additional notation. If x = (xl..... xn)

and y = (yl,...,yn) are two n-vectors, let the Inner-product of x and y be

(x,y) = XlYl+...+xY, where y, is the complex conjugate of yi. Let the

norm of x be 1xi = (x'x) and, for any n by n matrix C, let the norm of C

be ECII - max( IICx : xii = 1 ). For any symmetric positive-definite matrix

P, let the P-norm of x be lxIp = (Px,x )1/2 and the P-norm of C be

ICiL M= max( ICIUp : Ux~p - 1 ). Also, for any matrix C. let the spectral

radius of C be p(C) max( III X and eigenvalue of C ).
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If w is the solution of (1.1), w. is the nth iterate generated by the

stationary iteration (1.5), and e = w - w is the error in the nth

iterate, then

*n= [I- Aeni = [I-wA-IA]n o
0 ,  (3.1)

where e0 is the error in the initial guess w0. Since A is symmetric and

positive-definite, it is valid to multiply (3.1) by A1/2 to get

A1/2n = 1i-~ /2-1 1/2|1/2n_ = 1/2'1- 12]nAl/2e0

whence

Aen ,*A_ II-A 2 1'Al/ 2 llie 0o11 (3.2)

The last inequality is the basis for the following lemma,

1/2-1 1/2Loma 3.1: If p - p(-&)A A A ) <1, then the number of

iterations of (1.5) required to reduce the A-norm of the initial error by a

factor of a is at most n+l, where

(n-q) log a - log = lot 1+ log C, (3.3)

c is a positive constant, 6 and q+l is the size of the largest Jordan block

6 The o17taft 7 ais dependent upon the similarity transformation that

reduces A A A to Jordan normal form (see Theorem 3.1 of [141).
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of A112 X1lA112 with an sigonvalue of magnitude p. If A' 12 A1A1'12 Is

normal, then

n - lot log ;.(3.4)

Proof: By Theorem 3.1 of [14],

for constants c, q and p specified above. This inequality, together with

(3.2). proves the validity of (3.3). If A"12r1 'A1 1 2 is normal, then

I-w#A 1 A A1  can be diagonalized by a Hlermitian similarity

transformation, whence

and the well-known result (3.4) follows. Q.E.D.

If (1.5) is accelerated by the Chebyshev technique, then the error at

the nth step satisfies

e n = Pn(VA) e 0  (3.5)

where P a(z) is the translated and normalized Chebyshev polynomial of degree

n. (See, for example, 1].) Multiplying (3.5) by A1"2 and taking norms, we

set that

19eJ i 'Pn (A112r1IA1/2)IUN. I . (3.6)
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The last inequality is the basis of the following lema.

Leinat 3: If the eigenvalues of A1 1 2r A1 2 lie in the ellipse

E - z s C z - 1 - a cos 0 + i b sin 0, 0 j O 2x ), (3.7)

where 0 . b < a < 1, then the number of iterations of the Choebyshev

acceleration of (1.5) required to reduce the A-norm of the initial error by

a factor of a is at most n+l, where

lot q lag a 1o|lo + log C, (3.8)
r

a is a positive constant,7 q+1 is the size of the largest Jordan block of

A A with an eigenvalue on the ellipse E. and

r =(a + b)/(1 + -a 2 +b 2 ). (3.9)

If A is symetric. then

2 1

lot - / log . (3.10)

and, moreover, b - 0 in the expression for r.

Proef: By inequality (2.22) of [81, Section 6.2 of [11, and an

7 The conta t 2 Ljs 1 gpendent upon both the similarity transformation

that redueos A A A- to Jordan normal form (see Theorem 3.1 of [14])
and the bound (2.22) of [8] on the Chebyshev polynomials.
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argument similar to the one leading to Theorem 3.1 of [14],

UP (A1/2A 1A 1 12 ) S cnqrn  (3.11)
n

for the constants c, q, and r specified above. This inequality, together

with (3.6). proves the validity of (3.8). If A is symmetric, then

A A1Al has real eigenvalues and, moreover, it can be diagonalized by

an orthogonal similarity transformation. Hence. it follows from a

simplification of the argument used to prove (3.11) that

1P (AA1 2A 1A 1 /2 )I j 2rn ,

where b - 0 in the expression for r. This together with inequality (3.6)

proves the validity of (3.10). Q.B.D.

Although variants of the conjugate gradient algorithm have been

developed for nonsymetric problems, the analysis of these methods is not

well-developed. Consequently, we limit our discussion of the conjugate

gradient acceleration of (1.5) to the case that A is symmetric and

positive-definite. In this cases it is well-known that the approximate

solution w generated by the conjugate gradient acceleration of (1.5)n

minimizes the A-norm of the associated error, n., over all possible errors

*of the form

n Pn(AI/ 2A"A11 2)eo.

where p i(s) Is a polynomial of degree n satisfying pn (0) - 1. (See, for

example, [1].) Since the translated and normalized Chebyshov polynomial,
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P (z), satisfies these conditions, the following lemma is an imediaten

consequence of Lea& 3 .2.

L $in. 3.3: If 1 Is symmetric and the eigenvalues of A1 12 rA1 A1 12 lie

in the interval [l-a.l+a], 0 1 a ( 1. then the number of iterations of the

conjugate gradient acceleration of (1.5) required to reduce the A-norm of

the initial error by a factor of a is at most n+1, where

n log - / log - (3.12)

and

r- a(1 +

To use the results developed in this section to bound the number of

iterations of (1.5) or Its acceleration, we require estimates of the

spectrum of AIA. We turn to this question next.

4. Sigeavalme Istimates.

For the AD-D R factorization, the iteration matrix associated with

(.)is

I- 1A - [A+B 1
1-I[(L-,.)A+B1 ] [A+B 2 I[(1-*)A+B2 ] ,

which is similar to

[(1-,)A+B1 C A+B2 I E(-)A+B 1 [A+3 I1 2r
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In this section, we develop some eigenvalue estimates for the pair of

factors [(1-*)A+B 1 [A+B 2 1
- 1 and [(1-u)A+B2][A+B1]

-1 . These estimates

provide some guidance (which has proven to be very effective in practice)

for choosing the parameters (a and w required by the AD-DR and SAD-DKR

factorizations. Moreover, these estimates are the basis for the

conjectures developed in the next section concerning the work required to

solve (1.1) to a specified tolerance.

A number of preliminary lamas are required before we can state and

prove the main result of this section.

Lama 4.1: For either form of the modified DKR factorization (2.2)

or (2.12), if a(i) 1 0 and ) i=1,2, whereik di j,k

mi in ( [(1+aj~ )  (~ )(l+, )k' + (~+ + pI) I2

2 jlk jlk j~k ilk ilk

(1) c

JkPjk

(2)f f ± k1
Pj~k

j-1, k+f j,k

then

l(1))2- -

(v (1) 2. ~ k + f )l (4.1)
jlk (j~k ?J-k

(2) 2  + )l (4.2)
i~kl I..-02l;j-l,k +j-k

0 (1)I 1. (4.3)
0 J+Z, k  0 1 il~k+? k"

L a. ii m- iuIl i llI+ " ...
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0 jS h(2) L 1_ k (4.4)
J-" ,k 2  J -l,k+,i1 k

j-lLkjjak

at allpit j~h at which v ()and h M are required. Moreover,

if the user selected parameters fa (i) I and (y (i) ) are uniformly bounded
j,k jk

above independently of the stepsize, h, then

0 < h72N j h(i) (4.5)J. k

where H, although problem dependent, is independent of the stepsize, h.8

Prof: We prove this lemea for the factorization (2.2) only, as the

proof for (2.12) is similar.

Since the initial values of v(1) .(1) for the modified DIR
eJ,k and hj+l,k

factorization satisfy (4.1) and (4.3) and the basic recurrence relations

used to calculate the coefficients for both the original and modified DIR

factorizations are essentially the same, the induction argument used in

Lema 1 of [5] also proves (4.1) and (4.3).

(1)

To prove (4.5), note that, if vj k is computed by the recurrence

Inequality (4.5) does not hold near 00h for the unmodified DIR

factorization.
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(2.6), then

(1).2 (1+6(l) )bj (1) p (1)+ (P k' (4.6)
Vilk) il ik il -(1aj )(1p k k  i

where

P J ,k J,

whence, by (2.10), (2.11). and (4.6),

c *f -2
J l~k J. 2- kaIf i.kL2J+Jk Cj,k J.k+1jsk CJk ijjlk

where 4jk is 4tber '1+.1) )( +p1 ) or (1) depending upon whetherjk(1P1)Ak

v is convaue i.'m (2.6) or (2.11), respectively. The proof is
j .k (i) (i),l 2adq

completed by observing that the assumptions on *jk* 
7 (,k al a. and q

ensure that 4Jk is bounded above independently of the stopsize, h. Q.E*D.

Lema 4.2: For either form of the modified DIR factorization (2.2)
(21) ( i) ( i.i) = ohp for

or (2.12), If a 0, then A 1 1. Moreover, if a .k 0

constants 0 0 and 0 < p . 2, then A i 1 +c1hp/
2 for some constant

a>l0.

Poof: The bound p1 ?_ 1 follows directly from the definition of p1 in

Ci) = ~p ada , 8 r i ht

Lena 4.1. If, in addition, a( h and al, a2 1 q > 0 are Lipschitz

continuous in 5, th e n l 1 l+0lhP/2 by an argument similar to the one used

to prove (4.15) in [$]. The corresponding inequalities for 02 are proved
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in a similar way. Q.E.D.

Lemma 4.3: For A, BI" and B2 defined by (2.1). (2.4). and (2.14),

respectively,

(Azl)m ~(okj kjki - 12 + .Ix I- 2 (4.7)
(kzz)= jkJj+1,k- j,k j,kJ j,k+1-Xj~k

+ q Xjk 1.J,k12),

h=1). - '1n Ix -x (4.9)J+1.k j+l,k j

d =~x h J~ h IlJ+l.k~l-xj.k 2,(4.9)

where we have used the convention that zJ k = 0 for x j,k a h and the sums

are taken over all nonzero terms.

Proof: The validity of equations (4.7)-(4.9) can be demonstrated

easily by sumation by parts, as is the validity of the similar set of

equations (4.7)-(4.8) in (S]. Q.E.D.

Lemma 4.4: For either form of the modified DKR factorization (2.2)

or (2.12), if a ,k 0 and A I' ,k i then

0 d - Xz) L (Az,z), (4.10)

If, in addition, the user-selected parameters (ak () are

uniformly bounded above independently of the stepsize, h. then

a 2(1zz) j -(iiio) (4.11)
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for some constant 02 ) 0.
9

Proof: We prove this lemma for the factorization (2.2) only, as the

proof for (2.12) is similar.

To prove (4.10), we use an argument similar to the one used to prove

(4.11) in [5]. First, observe that 0 j -(Blz,x) follows directly from

(4.8) of Loma 4.3. since h ( l) 0 by Lemma 4.1. To verify the upper
j+l,k

bound on -(BlX,X), note that, by Lemma 3 of [5],

cI'la-bl2 < cla-el 2 + fib-el 2 ,
o+f

for any positive c, f and any complex a, b, e. This inequality, together

with Lemias 4.1 and 4.3, shows that

i.1) - h(1) , - 12

I j+1,k j+l,k- j,k+l

L JA f .Ix - 12
J+l,k-j,k+1

j,kfj,k

pl J Ak j+lk Jk jk j k+l- j3 k

SI__(AxZ).

For the unmodified DKR factorization, inequality (4.11) does not hold,
whence i is negative-semidefinite rather than negative-definite.

aIi
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To prove (4.11), observe that, by Lomas 4.1 and 4.3,

(ix.x) h (I 12
n j+lk j+l,k Jk+l

. h- Ij+l,k-jk+l

hl > , , . (e+,> (01.2
I yL -YL

all L L

where each L is a diagonal in h satisfying x+y=c, for some constant c, and

IYL ) is the subset of (x j,k ) on L. For each L, let YL be the n-vector

(4.with components (yL ) on the diagonal L, and let CL be the n by n matrix

h2 disg(-1,2,-1). Then

h-2 ,(4-+l) _(M 12 .(
h 7L -yL L = (CLyL, yL) L

where XL is the minimum eigenvalue of CL. Since the length of any diagonal

L in Gh is bounded, there exists a constant X. > 0, independent of both h

and L, such that XL 2 X, > 0. Consequently, (4.11) holds for c2 = H* > 0.

Q.E.D.

Lemia 4.5: If

1. Go) 0 h for constants c > 0 and 0 < p < 2, and

2. a, a2 ,

then

0 <- , - ,) (1-c 3 hP0>2 (Axi).t

ii2
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for some constant c~ 3) 0.

Proof: By Lomas 4.1 and 4.3.

o j -B (I Xi) -B2xX

c - * f .1 
+ . k f- ~~ 2

o a k-J,k+l J+1,k+1 j,k
J~k 'J.k Cj,k j+lk

where 0* R in(O1,02 . For some constant L.

-
-~'filk cJkfJ (1+Lh).

cJ,efj+l.k cj~ek jk

since a 2 n ) 0 is Lipschitz continuous in Z. Also, for any complex

values a. b. op d,

Ia-b,2 + I.-di 12. Iac12 + la-d 12 + lb-cl12 + Ib-d 12

Therefore,

j ~ ~ kxjkk Jj~kl-k

J.k -J~k

+1k -1. 1 22 + 1. 12
- Ij+1~~j,1k+ J~+l.k+ j1k
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Since a, = a2 _ i > 0 are Lipschitz continuous in D,

c _ lLhf J in c
"-- < - 2 kjn j,k fj,k"cj,k+l. fj+lk.I J,k 

for L sufficiently large, whence

0 - (BIx,x) - ('2X1X)

(.+.h) 2  a 12 ~ - 12
- 2* 2 {j,klj+l,kJk jk+l j+lk+l-jk l

,k xj,k+l-xj,k + 1j+l,k Xj+l,k+l-Xj+lk
1 2

(I 2 { j12 ~ k 2 }
- ,W j,klXj+l,k-Xj~k 12+ fj,k Xj,k+l-Xj,k

5. (1-c3hp/2)(Ax,x),

where the last inequality follows from Lemmas 4.2 and 4.4. Q.E.D.

Corollary 4.6: If

. ,k = c hp for constants c0 > 0 and 0 < p < 2,

2. a1  a2 , and

3. 0 < w . 1,

then the AD-DiR iteration matrix M is well-defined.0)
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Proof: From Lomna 4.5, if 0 < w j 1, then [(2-w)A+B I+ 2 ] is positive-

definite, whence so is [(2-w)A+B +B 2]. Therefore, [(2-w)A+B+B 2 ] is

nonsingular and M is well-defined by (1.6). Q.E.D.II

Tkeorei 4.7: Assume that

1. (i) = o0hp for constants co > 0 and 0 ( p . 2,
Jk 0

2. Y. (-  j ye for some constant ye < - independent of the stepsize,
1 J,k

h, and

3. aI = a 2.

Then any eigenvalue X of either [(1-w)A+B1][A+B 2] - 1 or [(1-.)A+B2][A+B11-1

is real and satisfies

-1 + 4 hP/2 -X 6h-P ( X j I - 5h 2- p, (4.12)

if w _ 1, and

-1 + c4hP/2 X < 1 - c h2-P + (1-w)c6 hP, (4.13)

if a S. 1, where 0 0 6 are positive constants.

Proof: We prove this result for [(1-*)A+B1 1[A+B 2]
1  only, as the

proof for [(1-*)A+B2] [A+B1 ] is similar.

Since A, B , and B are symetric and Li - A+B2 is positive-

definite, [(I-*)A+BI][A+B2]-1 is similar to the symetric matrix

-/2 -/[A+B2 ]-l [(1-i)A+BI][A+B2  1/2. Consequently, the eigenvalues of

[(1-u)A+B 1]A+B2] - 1 are real. Moreover. for x - [A+B2-1/2 y y .1 0.
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([A+B 1 -1/2 [(l-*e)A+B1 [A+B2 ] -1/2 yy 11wA xZ

(,Y) ([A+B21z'z)

whence any eigenvalue X. of [(1-*)A+B ][A+B2] -1 satisfies

(C (1-is)A+B 1 z,z) a:([(l-w)A+B lx~z)
zioo ((A+B 21 Z') zoo ([A+B2 lx.:)

In addition, since B B+Dl 2 B+2 and, by Assumption 1,

1, - 1 D2 - D. 2

- .- (4.14)
([A+B2 ]x'x) (Az,z)+(D 12z)+(Dx.x)

Thus, to verify that inequalities (4.12) and (4.13) hold. it is sufficient

to develop upper and lower bia-ds for the right side of (4.14). where,

throughout this proof, we assume x # 0.

Since t = spstv-eiie (Ax,:z)+(i x.x)+(Dx.x) > 0.
L2Li A 2 ipoiiedfnt,2

Therefore, if (1-o)(Ax~x)+( iix,x)+(Dxzx) S. 0. then

(1-*)(Azxz);(i z~z)+(Dx.z) oj1-chP

0. O theothe ha, i 1iA~)(x)+(Dx.z) 0,te
121

(1-*)(Ax.x)+(B 1 ,z)+(Dz,x) +. 1 B 1(Dx )+ -) (Dxzi)'

(Az,x)*( k2 xz)*(D:,z) +D~z -i-- +(1u)(415
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since, by Lomas 4.2 and 4.4, (Axx)+(D2xx)) 0. By Assumptions 1-2 and

the assumptions on a1 , a2 , and q, there exist positive constants a and N

such that

m52+p(z.z) J (Dx,x) h -2+(x,x), (4.16)

whence, by Lonma 4.4,

(n x,x)(Dr) j -C hO-P
(Dx'x) 5 5

for c€ 5 c2/M. Furthermore, from Loma 4.3 and the definition of D,

(A.x) € h-p
(Dx,x) 6

for c6 1 2/cO. Hence, if w 1 1, then

(1-.)(Ax,x)+( x,z)+(Dx.x) 2p

(Ax,x)+( '2x,x)+(Dxrx)

and, if a j 1, then

(1-t)(Ax~x)+(Ilx"x)+(Dxtx) - 0h
2- p + (1.-m)c6h-P ,

(Ax,z) +( 2 x, x)+(Dr, x)

showing that the upper bounds for inequalities (4.12) and (4.13) are valid.

To verify the lower bounds, consider two cases depending upon whether

(Dr,x) ) (Ax,x). If (Dx,x) ) (Ax,x), then

(B x,z) + (Dx,x) ) 0, i 1,2,
i

by Lomas 4.2 and 4.4, whence

(1m) (Ax x)+( 11x, z)+(Dx, x) (1--)(Ax. x)

(Azx.z)+( 2x,x)+(Dx,x) (Az,x)+( 2x,x)+(Dx,x)

... . ... ...... . D2............... .. lll ++ ° .. +
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Therefore, if a S 1, then

(1-..)(Ax,i)+(!j1 zx)+(Dz,x)

(Ax.z)+(- x~z)N(Dx~x)

and, if a 1 1, then

(1-s)(Ax~z)+(- x,z)+(Dx.z) -(i)

(Ax~z)+(12 x,z)+(Dx.x)

Thus, the lower bounds in the theorem are satisfied in this case provided

that 0 6 is sufficiently large, since h is bounded above in any

disoretization of 0.

On the other hand, if (Dx~z) (Ax.x), then

(Ax.z)1

(Ai)0 ~ )+(Dx,z) 2(4.17)

Furthermore, by Lemms 4.5,

(B Ix,z) I _,_a - 3 hp
12) (Ax,x) - (B2 X09

whence

(Az.z)+( 2 z~z)+(Dz~z)

-(kixz)-CI 2 z~z)+(Dxz)+(1-*+o hp12 )(Ax~x)

(Ax~z)+(j x x)+(Dz~x)

-1+(1-0+c 3hp/
2 )(xi

(Ax,x)+(B z~z)+(Di~z)

Consequently, by (4.17), if .1 then

(1-*)(Axzx)+(-1 x.z)+(Dz~x) -i + c hp/2
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for 04 0 3/2, and, if a . 1, then

(1-u)(Azx)+(B1z.x)+(Dx,z)-- ii . 1-1 + c 4h p/2 - (W-llc6 h-p,

(Azz)+( 2 ,)+(Dzz)6

showinS that the lower bounds for inequalities (4.12) and (4.13) are valid.

Q.E.D.

If our objective is to minimize p([(1-*)A+BI][A+B2]
-1) and

p([(1-*)A+B ][A+B 1 ) in the hope that this will minimize p(I-wMA-) and

lead to an effective stationary iteration, then, based upon equations
4

(4.12) and (4.13), we should take w = 1 and p = 3" For future reference,

we restate Theorem 4.7 for these particular values of w and p.

Theorem 4.8: Assume that

1. 0 - 1,

2. i) 0h 4 3 for some positive constant co,
J,k

(i)
3. i M ye for some constant y. <  independent of the stepsize,

h, and

4. a1 - a2 .

Then any eigenvalue I of either BI[A+B2] -1 or B2 [A+B 13 -1 satisfies

-1 +c 4 h2 / 3  A S 1- eh 2 /3 .

-1 2/34h0whoe*o

p(B 1 [A+B 2 1 ) 1 - 7 h2 / 3

and
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P(B 2 [A+B1 ] - 1 ) ' 1 07h2/3o

where c7 - ain(c4 c5 ) > 0.

5. Work Estimatos: Conjectures and Discussion.

In this section, using the igenvalue estimates from the previous

section, we develop conjectures that both p(I-l A) and p(I-S11A) are

bounded by 1-ch 2 / 3 , for some positive constant c. If the conjecture for the

SAD-DKR factorization is valid, then the number of iterations of (1.5)

required to reduce the A-norm of the initial error by a factor of a is

O(hl-2/31og) with the associated number of arithmetic operations being
2

0h l-21og-). Moreover, if (1.5) is accelerated by the Chebyshev or
a

conjugate gradient techniques, then the number of iterations is decreased

to O(h-l/3log1) with the associated number of arithmetic operations being

3-2 - If additional conjectures concerning the spectral structure

of M1 A hold, then, for the AD-DIR factorization, similar work estimates

are valid for the stationary iteration (1.5) and its Chebyshev

acceleration. Although the work estimates in this section are not

rigorous, numerical results presented in the next section strongly support

our conjecture that they are accurate.

-ll
We begin by stating the two fundamental conjectures about p(I-M 1 A)

-1
and p(I-So A) upon which the work estimates in this section are based.I

ConJesture 5.1: If the assumptions of Theorem 4.8 hold, then

P(I-IqA) J 1-c7 h /3. Moreover, the eigenvalues of M1
1A lie in a very

eooentric ellipse, the major-axis of which is contained in the interval
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e7 213 .2c7h2/3

Diseassiem: If C Iand C 2are normal matrices, then

P(C IC2) i 1C 1C2 0 '. Nc1II11C211 = p(Cl)p(C2).

Bence. if B 1 [A.B2] 1 and B2 [A+B1] 1 were normal, then

P(I-M,1A) p([A+B I 'B,[A+B2]I B2)

-p(B 1 CA+1 2] -B 2[A+B11 ')

Sp(B1 [A+B2] -1)p(B2 [A+B 11
1'),

and the first statement of the conjecture would follow from Theorem 4.8.

Moreover. if UK were symmetric, then the eigenvalues of Ki- A would be real

and would lie in the interval [c 7h2 13 .2 7 h
2 /3 ].

The conjecture is based upon the observation that, under the

assumptions of Theorem 4.8, each of B [+2-1, BAl-1, 1n ,i

falmost symetric' in the interior of the grid Q.,by which we mean, for

example, that

([AB2 1 w)j~ B2 1w)k(.1

whenever the grid-point (jh~kh) is not 'too close' to 811 This follows

from a simple calculation that shows that the matrices BDD2, AD1 . AB2- DB1,

ad D3 'almost commute' in the interior of the grid %.. However, if

(Jh.kh) is 'close' to 811.then (5.1) is a very poor approximation.

Although it is possible to be more specific about what we mean by 'almost
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syinetric', this has not lead us to a more convincing justification of the

conjecture. Therefore, we do not pursue this argument further at this

time.

ConJecture 5.2: If the assumptions of Theorem 4.8 hold, then

-12/3 -1p(I-S 1 A) J 1-c7h2 and the eigenvalues of S IA lie in the interval

[ 7 h2 /3.2-c 7h2 / 3 ].

Disussion: If C1 and C2 are normal matrices, then

p(c 1+C 2 ) 1C 1 c+C 2Jl . U1c + 1c2 1 = P(C 1 ) + p(C2 ).

In addition, if Conjecture 5.1 holds, then p(I-M11 A) _ 1-c7 h 2/3; the
conectre hatp(-lt) ( - 2/3

conjecture that p(I- A) . 1-c7 h2/3 can be defended in a similar manner.

Hence, if I- 1A and I-Ml t A were normal, then

1 -1 -t/3p(I-S1A) J 1p(I-M1 A) + 1p(I-K1 A) 5 1-c 7 h . (5.2)

Furthermore, since S1 is symetric, the eigenvalues of S 1 A are real.
1 1

Hence, if (5.2) holds, then the eigenvalues of S IA lie in the interval

[c 7 h2 / ' 3,2-/ 7 h2 /3].

[a7 2 o h 1 -1 -t 
1-Although I-MK A and I-M IA are not in general normal, they are

1|

#almost symmetric' in the interior of the grid Gh in the sense used in the

discussion following Conjecture 5.1.

The rm 5.3: If the assumptions of Theorem 4.8 hold and

ConJecture 5.2 is valid, then, for the SAD-DUR factorization, the number of
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iterations of (1.5) required to reduce the A-norm of the initial error by a

factor of a is O(h-2/3 log-) and the associated number of arithmetic

-2 2
operations is 0{h-31o88). Moreover, if the iteration (1.5) is accelerated

by the Chebyshev or conjugate gradient techniques, then the number of

iterations is decreased to O(h-1/3log1) and the associated number of

1 
9

arithmetic operations is O(h 31og-).

Proof: If the assumptions of Theorem 4.8 hold and Conjecture 5.2 is
valid, then p -1A) J 1-c7 h

/ . Moreover, A1/2SIA 1 /2 is normal,

1since S 1is syumetric. Hance, by Lonma 3.1, the number of iterations of

(1.5) required to reduce the A-norm of the initial error by a factor of e

is at most n+l, where

1 1 01-2/3 1
n= log- / log I= (h log-).

Moreover, S is symetric and the eigenvalues of S 1A lie in the interval
1 1

7 h 2/3,2-o7h 2/]./3 Hence, if the iteration (1.5) is accelerated by the

Chebyshev or conjugate gradient technique, then, by Lemas 3.2 and 3.3, the

number of iterations of (1.5) required to reduce the A-norm of the initial

error by a factor of a is at most n+l, where

n - log / log - 0071 3logA),
a r a

since, in this case, a - 1-c h21 3 and

17
1 = 1+ch 1/3
fr

for some lpositive constant a.
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Since, for the SAD-DIR factorization, the number of multiplies needed

to perform one iteration of (1.5) or its Chebyshev or conjugate gradient

acceleration is proportional to the number of grid-points in the

discretization, the number of multiplies per iteration is O(h 2 ) . Bence,

the work estimates follow immediately from the bounds on the number of

iterations. O.R.D.

For the AD-DR factorization, the work estimates are complicated

slightly by the appearance of the constants c and q in equations (3.3) and

(3.8) and the constant b in the expression for r (3.9). Clearly, these

constants depend upon the matrices Nr1 and A and, consequently, may grow as

h-)O. However, if they do not Zrow 'too fast' as h->O, a result similar to

Theorem 5.3 holds for the AD-DE factorization as well.

Theorm S.4: If

1. the assumptions of Theorem 4.8 hold,

2. Conjecture 5.1 is valid, and

3. the constants c and q that appear in the inequality (3.3) satisfy

O(a-k) and q Q. for some constants k and Q independent of h.

then, for the AD-DR factorization, the number of iterations of (1.5)

required to reduce the A-norm of the initial error by a factor of a is

O(h 2 13logs) and the associated number of arithmetic operations is

O(h -2101). Moreover, if the iteration (1.5) is accelerated by the

Chebyshev technique and Assumption 3 is replaced by
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3.the constants c and q that appear in the inequality (3.8)

satisfy c - 0(8-k) and q J Q. for some constants k and Q

independent of h, and

4. the constant b that appears in the expression for r (3.9)

satisfies b -O(h 13),

then the number of iterations is decreased to O(h71 13 log I) with the
-2 a

associated number of arithmetic operations being 0(bh 3log-).a

Proof: If the assumptions of Theorem 4.8 hold and Conjecture 5.1 is

valid, then

P -P(I-Iq A) S. 1-c h 23(5.3)

for some positive constant c07. By Lemma 3.1, the number of iterations of

(1.5) required to reduce the A-norm of the initial error by a factor of a

is at most n+1, where

(an-q) log 1- logi lox-+ log c

Therefore, by Assumption 3, and (5.3). n J . where

(m-Q)c h2/ _ Q log a - (k+l) log ~

for some constants Q. k. and C independent of h, whence n -O(h- 2 /3 log I.

By Assuptions 1, 2, ad 4. the eigenvalues of M, A lie in the

.11 ipso

Z ( a C : a 1 - a cos 0 + I b sin 0, 0 J. 0 J 2x )
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where a - 1-c7 h2/3 and b - O(h 1/3), whence

1 L.Ji I 1/1 3

- - Z 1+ch1/
r a + b

for some positive constant c. Therefore, by Assumption 3. Lemma 3.2, and an

argument similar to the one used above for the stationary iteration, if the

iteration (1.5) is accelerated by the Chebyshev technique then the number

of iterations required to eeduce the initial error by a factor of a is

decreased to O(h - 1/ log).
a

Since, for the AD-DR factorization, the number of multiplies needed

to perform one iteration of (1.5) or its Chebyshev acceleration is

proportional to the number of grid-points in the discretization, the number

of multiplies per iteration is O(h-2 ). Hence, the work estimates follow

immediately from the bounds on the number of iterations. Q.E.D.

We have not been able to establish the validity of Assumptions 3. 3.

and 4 for the AD-DR factorization, although we believe that the violation

of either Assumption 3 or 3 is very unlikely in practice. On the other

hand, the validity of Assumption 4 is questionable. For a few sample

problems with coarse discretizations, we computed the eigenvalues of ,I A

and found some of them to have small, but not insignificant, imaginary

parts. However, the numerical results presented in the next section do not

contradict the conclusion of Theorem 5.4, which lends support to our belief

that the assumptions on which the theorem is based may be valid as well.

Finally, we re-emphasize that the class of problems of the form (1.2)
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to which our convergence results for the AD-DKR and SAD-DR factorizations

pertain is essentially the same as the class considered by Dupont, Kendall,

and Rachford [5 for the DKR factorization, except for the added

restriction that a 1 a2. Experimental results show that, if this

restriction is violated, then the Alternating-Direction technique may not

improve the rate of convergence of the iteration (1.4) or its acceleration.

Furthermore, note that the parameters = I and aj, k = c0h4/3 recommended

for use with the ADI-DIR and SAD-DIR factorizations are substantially

difforent from the corresponding parameters w = O(h) and JA = h2

recommended by Dupont, Kendall, and Rachford [5] for the DIR factorization.

Moreover, experimental evidence suggests that the AD-DIR and SAD-DKR

factorizations do not achieve the substantially improved rates of

convergence that we have observed if the parameters recommended for the DKR

factorization are used. A more complete discussion of these observations

is given in [3].

6. Nmerioal Results.

In this section, we present some numerical results that support the

conjectures of the previous section.

For this experiment, we chose the Dirichlet problem with homogeneous

boundary conditions for the two-dimensional elliptic equation (1.2) with V

coefficients

a1(z'y) - a2(z'y) - e XY , q(xy) - -I/(l+x+y)

1 11 1
on the L-shaped domain 12 having vertices (0,0), (1,0), (1.1), 4,!). (1.1),

2 2, 2 2d
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(0,1). The domain was discretized with N+1 evenly spaced grid-lines in
1

each direction; h = -. For N = 10, 20, 30,....90, we discretized (1.2)

using the standard five-point operator described in Section 2. We computed

r, the right side of the resulting system of linear equations (1.1), so

that the system has the solution

1 1w x(-x )(l-x )Y (l-y k ) (l-Yk),
J,k = j2 j jk2

where

xj jh and Yk = kh.

Starting from an initial guess of zero, we solved (1.1) by the iterative

methods discussed in the previous section. Also included for comparison is

the conjugate gradient acceleration of (1.5) based upon the DKR

factorization. In each case, we recorded the number of iterations required

to reduce the A-norm of the initial error by a factor of a = 10- 5 .

In Figure 6-i, the number of iterations required to solve (1.1) to

the specified accuracy are listed for the methods

1. SIN, the stationary iteration (1.5) based upon the nonsymmetric

AD-DR factorization MI with jk = h4 /3 and iteration parameter

2. SIS, the stationary iteration (1.5) based upon the symmetric SAD-DKR
= 4/3

factorization S1 with aJ, k  h and iteration parameter w = 1,

3. CNN, the Chebyshev acceleration of the stationary iteration (1.5)

4/3
based upon the nonsysmetric AD-DKR factorization N1 with a h

1 J~/
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and iteration parameters chosen to minimize P (z) on the interval
n

12/3 2_2/3]

4. CKS, the Chebyshev acceleration of the stationary iteration (1.5)

based upon the symmetric SAD-DKR factorization S with aj, k = h4 /3

and iteration parameters chosen to minimize P (z) on the interval
n

[h2/3 2_h2/31,

5. CGS, the conjugate gradient acceleration of the stationary iteration

(1.5) based upon the symmetric SAD-DKR factorization S with

Jk h4 3 , and

6. CGDIR, the conjugate gradient acceleration of the stationary

iteration (1.5) based upon the DIR factorization with aj, k = h2.

For each method, both the modified (W) and unmodified (UK) DIR

factorizations were used. Also listed in the last two lines of Figure 6-1

are the expected rate of convergence, E, and the observed rate, R, where R

is computed by a least squares fit to

log N = R log (NUMBER OF ITERATIONS) + C

for N - 30,40,....,90.

For each of the methods, the numerical results for the modified and

unmodified DER factorizations are almost identical. Consequently, we have

plotted the number of iterations for the methods based upon the unmodified

DR factorization only in Figures 6-2 and 6-3. The CGDKR method is

included in each graph for comparison.
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IN SIN SIS CHN I CS cos I CODaIK
I I IUNl vIUNl xlUNu NUN x UN UKMl

110 SI 41 41 41 91 9 91 9 41 41 7 71
120 8 7 I I 71 91 9 91 9 6 5 10 101
I 30 10 I 10 I 10 I 10 I 11 I 11 11 I 11 7 I 7 I 12 12 I
I 40 12 I 12 I 12 I 12 I 13 I 13 12 I 12 8 I 8 I 14 14 I
I 50 14 I 14 I 14 I 14 I 14 I 14 13 I 13 8 I 8 I 16 16 I
160 15I15 16 16 15 15 14 13 9 9 171 171
170 17 17 118 18 17 116 15 15 91 9 19 191
I 80 18 I 18 I 19 I 19 I 17 1 17 15 I 15 10 I 10 I 20 I20
I 90 20 20 I 21 I 20 I 18 I 18 17 I 16 10 I 10 I 21 21 I

I El 2/31 2/31 2/3i 2/31 1/3 1131 1/31 1/31 1/31 1/31 1/21 1121

I R 1.6141.6141.6771.6521.4441.4301.3731.3371.3251.3251.5131 .5131

Filar 6-1: The number of iteration3 required to reduce the A-norm of the
error by a factor of a = 107 for the stationary iteration

(1.5) and its Chebyshev and conjugate $radient accelerations based
upon the AD-DUD, SAD-DU, and DIR factorizations.
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The rate of convergence of the methods, with the possible exception

of CHN, agrees very veil with the rate predicted by the analysis in the

previous section. The reason for the discrepancy for CHN is not clear to

us, but it could be that Assumption 4 of Theorem 5.4 is violated or that

the parameters that we chose for the Chebyshev iteration are not optimal.

This question requires further investigation.

Although the principal aim of this paper is to present asymptotic

work estimates for several ADIF methods and not to compare the efficiency

of various algorithms for solving (1.1). we conclude with a few

observations about the efficiency of CGS. Even on coarse grids, the number

of iterations required to solve this test problem by CGS is about half the

number required by CGDKR. Moreover, this ratio decreases with N, as the

theory predicts. However, straightforward implementations of CGS and CGDIR

require 16(N-1) and 44(N-l) , respectively, multiply-adds per iteration.

Hence, for these implementations, this problem, and the grids considered,

CODKR requires less work than CGS to solve the problem. But the relative

efficiency of these two methods is problem dependent: for the Laplacian on

a unit square with the same sequence of grids and implementations, we found

that COS requires slightly less work than CGDKR on the fine grids. In

addition, Eisenstat [6] has shown that CGDKR can be implemented in lO(M-I) 2

multiply-adds per iteration. Some of his techniques are applicable to CGS

as well, and it is our hope that the work per iteration for this method can

be significantly reduced. We intend to consider the question of efficient

implementation of ADIF methods in [31, as well as the comparison of these

methods with others.
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